Development of the Component Display Theory Model for Enhancing Problem-Solving Skills
Article Number: e2025175 | Published Online: April 2025 | DOI: 10.22521/edupij.2025.15.175
Muhammad Syahrul Kahar , Irmawati , Muhammad Fathurrahman , Suparman Suparman , Wanida Simpol , Muhammad Ali
Full text PDF |
155 |
67
Abstract
Background/purpose. The application of learning models is expected to significantly promote the enhancement of students' problem-solving abilities through the development of interactive learning models. This study aims to (1) determine whether the Development of the Component Display Theory (CDT) Model is categorized as valid, practical, and effective and (2) assess whether the Development of the CDT Model can improve Problem-Solving Skills. Materials/methods. The development of the CDT model was carried out through the 4-D model stages (Define, Design, Develop, Disseminate). Data collection instruments included test instruments, validation, and student response. Subsequently, data analysis techniques used included N-Gain test, response test, and practicality test of the students. Results. The validation results by construction experts were 3.67 with a percentage of 91.67, categorized as "valid," and the content validation results had an average of 3.63 with a percentage of 90.67, also categorized as "valid." Student response results obtained an average score of 3.97 with a percentage of 79.41, falling within the "practical" category. Furthermore, the improvement in problem-solving skills achieved an N-Gain value of 0.48, categorized as "moderate" and "sufficiently effective," indicating that the developed CDT model meets the practicality criteria and is effective enough to enhance students' problem-solving abilities. |
Conclusion. The conclusions of this study are (1) the developed CDT model is categorized as valid, practical, and effective, and (2) there is an improvement in problem-solving abilities of the students using the CDT model.
Keywords: Learning model, component display theory, problem solving, university students
ReferencesArdy, I., & Hakim, M. ari. R. (2021). Kepraktisan Media Pembelajaran Komik Matematika Pada Pendahuluan Pendidikan selalu mengalami perubahan dan perkembangan sesuai dengan adanya perubahan dan perkembangan kehidupan manusia . Oleh karena itu proses pembelajaran yang dilakukan dalam rangka per. 10(April), 91–100. https://doi.org/10.33373/pythagoras.v10i1.2934
Cahyanto, B., & Afifulloh, M. (2020). Electronic Module (E-Module) Berbasis Component Display Theory (CDT) Untuk Matakuliah Pembelajaran Terpadu. JINOTEP (Jurnal Inovasi Dan Teknologi Pembelajaran): Kajian Dan Riset Dalam Teknologi Pembelajaran, 7(1), 49–56. https://doi.org/10.17977/um031v7i12020p049
Ceberio, M., Almudí, J. M., & Franco, Á. (2016). Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education. Journal of Science Education and Technology, 25(4), 590–609. https://doi.org/10.1007/s10956-016-9615-7
Damayanti, N., & Kartini, K. (2022). Analisis Kemampuan Pemecahan Masalah Matematis Siswa SMA pada Materi Barisan dan Deret Geometri. Mosharafa: Jurnal Pendidikan Matematika, 11(1), 107–118. https://doi.org/10.31980/mosharafa.v11i1.1162
Dwi Putra, H., Fathia Thahiram, N., Ganiati, M., & Nuryana, D. (2018). Kemampuan Pemecahan Masalah Matematis Siswa SMP pada Materi Bangun Ruang Development of Project-Based Blended Learning Model to Support Student Creativity in Designing Mathematics Learning in Elementary School. JIPM (Jurnal Ilmiah Pendidikan Matematika), 6(2), 82–90. http://journal.unipma.ac.id/index.php/jipm
Faoziyah, N. (2022). Kemampuan Pemecahan Masalah Matematis Siswa Melalui Pembelajaran Berbasis Pbl. JUPE : Jurnal Pendidikan Mandala, 7(2). https://doi.org/10.58258/jupe.v7i2.3555
Febrianawati, Y. (2018). Uji Validitas Dan Reliabilitas Instrumen Penelitian Kuantitatif. Jurnal Tarbiyah: Jurnal Ilmiah Kependidikan, 7(1), 17–23. https://doi.org/10.21831/jorpres.v13i1.12884
Gdi, T., & Hidayanto, D. N. (2016). Pengembangan Pembelajaran IPS SD Berdasarkan Preskripsi “orryponent Display” Theory GDI). http://dx.doi.org/10.17977/jip.v6i2.2331
Gorbi Irawan, A., nyoman Padmadewi, N., & Putu Artini, L. (2018). Instructional materials development through 4D model. SHS Web of Conferences, 42, 00086. https://doi.org/10.1051/shsconf/20184200086
Gumisirizah, N., Muwonge, C. M., & Nzabahimana, J. (2024). Effect of problem-based learning on students’ problem-solving ability to learn physics. Physics Education, 59(1), 015015. https://doi.org/10.1088/1361-6552/ad0577
Hariyanto, B., MZ, I., SU, W., & Rindawati. (2022). 4D Model Learning Device Development Method of the Physical Geography Field Work Guidance Book. MATEC Web of Conferences, 372, 05008. https://doi.org/10.1051/matecconf/202237205008
Indraswati, D., Marhayani, D. A., Sutisna, D., Widodo, A., & Maulyda, M. A. (2020). Critical Thinking Dan Problem Solving Dalam Pembelajaran Ips Untuk Menjawab Tantangan Abad 21. Sosial Horizon: Jurnal Pendidikan Sosial, 7(1), 12–28. https://doi.org/10.31571/sosial.v7i1.1540
Karimah, S., Utami, R., & Hidayah, N. (2018). Keefektifan Media Pembelajaran Berbasis Edmodo terhadap Kreativitas Mahasiswa. Jurnal Pendidikan Edutama, 5(2), 97. https://doi.org/10.30734/jpe.v5i2.132
Kahar, M. S., Arsyad, R. Bin, Fathurrahman, M., & Mursalin, M. (2023). Component Display Theory (CDT) Learning Model Design in Basic Physics Lectures. Jurnal Penelitian Pendidikan IPA, 9(11), 9629–9635. https://doi.org/10.29303/jppipa.v9i11.5427
Kartini, K. S., Tri, I. N., & Putra, A. (2020). Respon Siswa Terhadap Pengembangan Media Pembelajaran Interaktif Berbasis Android. 4(1), 12–19. https://doi.org/10.23887/jpk.v4i1.24981
Kristianti, D., & Julian, S. (2017). Pengembangan Perangkat Pembelajaran Matematika Model 4D Untuk Kelas Inklusi Sebagai Upaya Meningkatkan Minat Belajar Siswa. Jurnal MAJU, 4(1), 38–50. http://ejournal.stkipbbm.ac.id/index.php/mtk/article/view/71/61
Kuswandari, R. E., & Suryanto, S. (2015). Aplikasi Model Component Display Theory (CDT) Dalam Pengembangan Multimedia Interaktif Matakuliah Jaringan Komputer. Jurnal Inovasi Teknologi Pendidikan, 2(2), 179–189. https://doi.org/10.21831/tp.v2i2.7608
Khan, M. J., & Mustafa, K. (2019b). Modelling adaptive hypermedia instructional system: a framework. Multimedia Tools and Applications, 78(11), 14397–14424. https://doi.org/10.1007/s11042-018-6819-2
Li, X., Rong, J., Li, Z., Zhao, X., & Zhang, Y. (2022). Modeling drivers’ acceptance of augmented reality head-up display in connected environment. Displays, 75, 102307. https://doi.org/10.1016/j.displa.2022.102307
Merrill, M.D. (1983). Component Display Theory. In C. Reigeluth (ed.), Instructional Design Theories and Models. Hillsdale, NJ: Erlbaum Associates.
Merrill, M. (1987). The new Component Design Theory: instructional design for courseware authoring. Instructional Science, 16(1), 19–34. https://doi.org/10.1007/BF00120003
Merrill, M. D. (2007). A Task-Centered Instructional Strategy. Journal of Research on Technology in Education, 40(1), 5–22. https://doi.org/10.1080/15391523.2007.10782493
Merrill, M. D. (2018). A Lesson Based on the Component Display Theory. In Instructional Theories in Action (pp. 201–244). Routledge. https://doi.org/10.4324/9780203056783-7
Nicholus, G., Muwonge, C. M., & Joseph, N. (2023). The Role of Problem-Based Learning Approach in Teaching and Learning Physics: A Systematic Literature Review. F1000Research, 12, 951. https://doi.org/10.12688/f1000research.136339.2
Park, S., Kim, L., Kwon, J., Choi, S. J., & Whang, M. (2022). Evaluation of visual-induced motion sickness from head-mounted display using heartbeat evoked potential: a cognitive load-focused approach. Virtual Reality, 26(3), 979–1000. https://doi.org/10.1007/s10055-021-00600-8
Purnawati, P., Umar, M. K., & Abdjul, T. (2023). Development of Physics Teaching Module for Phase-E with the CDT (Component Display Theory) Approach. Jurnal Penelitian Pendidikan IPA, 9(12), 12200–12212. https://doi.org/10.29303/jppipa.v9i12.5722
Renkl, A., & Scheiter, K. (2017). Studying Visual Displays: How to Instructionally Support Learning. Educational Psychology Review, 29(3), 599–621. https://doi.org/10.1007/s10648-015-9340-4
Tenzin, S., Tendar, P., & Zangmo, N. (2022). Enhancing Students’ Understanding of Abstract Concepts in Physics by Integrating ICT in Teaching-Learning Process. Asian Journal of Education and Social Studies, 26(2), 68-80. https://doi.org/10.9734/ajess/2022/v26i230624
Troussas, C., Krouska, A., & Sgouropoulou, C. (2021). Improving Learner-Computer Interaction through Intelligent Learning Material Delivery Using Instructional Design Modeling. Entropy, 23(6), 668. https://doi.org/10.3390/e23060668
Wantu, H. M., Djafri, N., Lamatenggo, N., & Umar, M. K. (2023). Classroom Learning Management Using Component Display Theory in Islamic Education Courses. International Journal of Professional Business Review, 8(7), e02512. https://doi.org/10.26668/businessreview/2023.v8i7.2512
Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606–619. https://doi.org/10.1119/1.17849